cadence’

Applying Logic Synthesis for
Speeding Up SAT

Niklas Een
Alan Mishchenko
Niklas Sorensson

2

Problem Formulation

* Given a (combinational) circuit, how do we best clausify it
for the CNF-based SAT-solver?

Assume given on And-Inverter Graph (AIG) form:

Primary Outputs (POs)

AlG

RS
Primary Inputs (Pls)

June 5, 2007

Contract: Clausify logic such that the

(functional) relation between Pls and
POs is established.

...gives the freedom to:

- Omit internal signals

(don’t give them a SAT variable)
- Create new internal signals
(by circuit simplifying rewrites)

cadence

Clausification in the small (“easy”)

* How to produce a small set of clauses for 1-output, k-
input subgraphs (“super-gates”) of the AlG for small k:s:

— k=4 Pre-compute and tabulate exact results
— 4 <k =£16: Use Minato’s ISOP-algorithm

Clausification in the large (hard!)

* How to partition AlG into super-gates?
* How to handle reconvergence? (the root of all evil)

Proposal: Use FPGA-style technology mapping!

I cadence

June 5, 2007

Overview — “The three staged rocket”

* The AlG representing the SAT
problem is minimized (DAG-aware).

* The minimized AlG is translated into
k-input LUTSs. “cost(LUT) = #clauses”

* Final CNF is optimized by variable
elimination and subsumption.

1765 134 output

A1-7 14119 T

-11 -6 1449

-11-5 1439 4— OXFTFB

1211 -2 14-114-3

12 -4 -2 149 / \

12-3-2 15 12 -8 13 14 x6 0xFDO0 | | 0x3133 | | 0xC040

121143 15128-1314

122 1512 -8 / \\

1311-10-4 -15-128 X0 <2 X7 <NOR> | xl x8

133104 -1513

13113 15 14 / T \

-13 10 x3 x4 X5 x3 x5
CNF minimization Techmap for CNF AIG minimization

¢ Junes, 2007 I cadence

Cut Enumeration

Let A, and be A, two sets of

cuts, and the merge operator | ({x{afi{ade}fadbc}

A
1, be defined as follows: {abe}{abc}}

f {fi{de;{dbc;
A LA, = {fabe}{abc}

(@Ethfd /N o ramen
{GOG| G UA,

C,0A, /
GO G| <k}

a b C

{fa}} {{b}} {{ch

5 Junes, 2007 I cadence

DAG-Aware Minimization

* Minimizes an AlG taking sharing into account.

* Compute “good” AlG representations for each
4-input function.

* Enumerate all cuts: see if cut cone can be
replaced by node saving representation.

* If time-budget admits: perturb and repeat.

cadence

6 June 5, 2007

DAG-Aware Minimization: Example

out0

cadence

DAG-Aware Minimization: Example

x1 x2 X3

cadence

DAG-Aware Minimization: Example

out0

"

x1 x2 X3

cadence

une 5, 2007

Technology Mapping

Enumerate all k-input cuts (k=4 in example).
Select a cut for each node (= potential LUT).

Outputs from logic will recursively induce a
subgraph corresponding to LUT representation.

Area Flow: Estimate the area increase that would
result from including a node:

cost of node + cost of children
estimated number of fanouts

“cost of node = 17 in example on following slides
(for simplicity), but “#clauses” in real algorithm.

I cadence

Techmapping — enumerate cuts

output :
Node 17: [req. time=2, fanout est.=1.5]

o { 16 15 } t=2 AF=1.44 (CS=2

{ 15 14 x2 } t=2 AF=1.56 CS=3

{ 14 x2 x1 } t=2 AF=1.11 CS=3

0 ° { 16 14 x1 } t=2 AF-=1.44 CS=3

{ 15 13 x3 x2 } t=2 AF=1.78 CS=4

o 0 ° { 13 x3 x2 x1 } t=2 AF=1.33 CS=4
{ 16 13 x3 x1 } t=2 AF-1.67 CS=4

x0 @ o t = Arrival Time
(AF—O.SO) x8 AF = Area Flow

(estimated area required

" ° for introducing node)
/
s Gorw) CS = Cut Size
AN
x4 x5

cadence

11 June 5, 2007

12

Techmapping — best cut for each node

June 5, 2007

output

13:
14:
15:
16:
17:
18:
19:
20:
21 :
22 :
23:
24 :
25:
26:
27 :
28:
29:

iy, b, b, iy b iy, iy b i iy b iy iy e iy g g

x5
x5
x5
x5
14
14
14
16
16
16
16
14
x5
15
16
18
27

x4
x4
x4
x4
x2
x7
x8
x1
x1
X6
X6
x8
x4
x8
X6
15
19

x3
x3
x3
x1
x2

x0

x1
X2
x3

x1
x8
17

e e e e e e e) e e o e e e o

cadence

13

Techmapping — induced subgraph

June 5, 2007

output

29 (AF—S 28)

@
/

13:
14:
15:
16:
17:
18:
19:
20:
21 :
22 :
23:
24 :
25:
26:
27 :
28:
29:

i

iy, b, i, iy b iy iy b i iy e iy iy g gy g

x5
x5
x5
x5
14
14
14
16
16
16
16
14
x5
15
16
18
27

x4
x4
x4
x4
x2
x7
x8
x1
x1
X6
X6
x8
x4
x8
X6
15
19

x3
x3
x3
x1
x2

x0

x1
X2
x3

x1
x8
17

e e e e e e e) e e o e e e o

cadence

Techmapping — iterate procedure

output
output

@ T

0xF7FB

[\

X6 0xFDO00 0x3133 0xC040
ﬁ /w / \w\
x0 x2 x7 <NOR> x1 x8
x3 x4 x5

@

“Super-gate” representation

(each box will expand to a set of clauses)

cadence

14 June 5, 2007

15

Benchmark Results

SAT Runtime (sec)

— Cadence BMC

Problem (orig) S D DS T TS DT DTS
CIS-70u 21.9 12.3 3.6 3.1 2.5 4.1 1.2 1.3
C'1S-71s 15.2 8.8 7.7 39 2.1 3.1 4.0 2.7
olm-154u 116.4 48.3 411 37.7 116 344 156 9.3
olm-155s 101.8 229 129 16.2 18.2 50.6 134 6.9
ri-18u 1516.0 139.4 361.9 1194 196.3 788 78.8 39.0
r1-19s 1788.2 276.7 535.0 154.8 317.8 137.1 131.9 42.5
r2-19u 403.8 214.4 239.8 169.7 140.9 73.7 114.8 78.1
r2-20s 3066.1 893.4 1002.9 353.2 376.2 313.5 687.5 96.5
r6-19u 316.1 225.6 133.9 104.7 107.9 107.6 53.2 55.0
r6-20s 2305.4 456.4 863.1 385.8 507.0 236.9 307.2 101.2
Total speedup: 42x 3.0x 7.2x b5H.7x 93x 69x 22.3x
Arithmetic average speedup: 3.9x 3.6x 6.5x 6.3x 7.6x 9.2x 19.7x
Harmonic average speedup: 2.7x 2.9x 48x 5H.3x 49x 6.6x 11.5x

S = cnf Simplification

June 5, 2007

D = Dag shrink

T = Techmap for cnf

cadence

Conclusions

* Two techniques from logic synthesis was used:
— DAG-aware minimization
— Technology mapping (adapted for CNF generation)

* Both techniques contributed to speed-ups
* Orthogonal to CNF-based preprocessing
* For BMC problems, the speedup was ~10x.

cadence

16 June 5, 2007

