
Applying Logic Synthesis for
Speeding Up SAT

Niklas Een
Alan Mishchenko
Niklas Sörensson

June 5, 20072

...gives the freedom to:
 - Omit internal signals
(don’t give them a SAT variable)
 - Create new internal signals
(by circuit simplifying rewrites)

Problem Formulation

• Given a (combinational) circuit, how do we best clausify it
for the CNF-based SAT-solver?

Assume given on And-Inverter Graph (AIG) form:

AIG

Primary Outputs (POs)

Primary Inputs (PIs)

Contract: Clausify logic such that the
(functional) relation between PIs and
POs is established.

June 5, 20073

Clausification in the small (“easy”)

• How to produce a small set of clauses for 1-output, k-
input subgraphs (“super-gates”) of the AIG for small k:s:
– k ≤ 4: Pre-compute and tabulate exact results
– 4 < k ≤ 16: Use Minato’s ISOP-algorithm

Clausification in the large (hard!)

• How to partition AIG into super-gates?
• How to handle reconvergence? (the root of all evil)

Proposal: Use FPGA-style technology mapping!

June 5, 20074

Overview – “The three staged rocket”

• The AIG representing the SAT
problem is minimized (DAG-aware).

• The minimized AIG is translated into
k-input LUTs. “cost(LUT) = #clauses”

• Final CNF is optimized by variable
elimination and subsumption.

11 7 6 5
-11 -7
-11 -6
-11 -5
12 11 -2
12 -4 -2
12 -3 -2
-12 -11 4 3
-12 2
13 11 -10 -4
13 -3 -10 -4
-13 -11 3
-13 10

-13 4
14 11 9
14 -4 9
14 3 9
-14 -11 4 -3
-14 -9
15 -12 -8 -13 14
15 12 8 -13 14
-15 12 -8
-15 -12 8
-15 13
-15 -14

AIG minimizationTechmap for CNFCNF minimization

June 5, 20075

x

a cb

d e

f

{{e} {b c}}

{{f} {d e} {d b c}
{a b e} {a b c}}

{{x} {a f} {a d e} {a d b c}
{a b e} {a b c}}

{{d} {a b}}

{{a}} {{b}} {{c}}

x

a cb

d e

f

{{e} {b c}}

{{f} {d e} {d b c}
{a b e} {a b c}}

{{x} {a f} {a d e} {a d b c}
{a b e} {a b c}}

{{d} {a b}}

{{a}} {{b}} {{c}}

Cut Enumeration

Let ∆1 and be ∆2 two sets of
cuts, and the merge operator
⊗k be defined as follows:

∆1 ⊗k ∆2 :=

{ C1 ∪ C2 | C1 ∈ ∆1,

C2 ∈ ∆2,
|C1 ∪ C2| ≤ k }

June 5, 20076

DAG-Aware Minimization

• Minimizes an AIG taking sharing into account.
• Compute “good” AIG representations for each

4-input function.
• Enumerate all cuts: see if cut cone can be

replaced by node saving representation.
• If time-budget admits: perturb and repeat.

June 5, 20077

DAG-Aware Minimization: Example

June 5, 20078

DAG-Aware Minimization: Example

June 5, 20079

DAG-Aware Minimization: Example

June 5, 200710

Technology Mapping

• Enumerate all k-input cuts (k=4 in example).
• Select a cut for each node (= potential LUT).
• Outputs from logic will recursively induce a

subgraph corresponding to LUT representation.
• Area Flow: Estimate the area increase that would

result from including a node:

 cost of node + cost of children
estimated number of fanouts

• “cost of node = 1” in example on following slides
(for simplicity), but “#clauses” in real algorithm.

June 5, 200711

Node 17: [req. time=2, fanout est.=1.5]

 { 16 15 } t=2 AF=1.44 CS=2
 { 15 14 x2 } t=2 AF=1.56 CS=3
 { 14 x2 x1 } t=2 AF=1.11 CS=3
 { 16 14 x1 } t=2 AF=1.44 CS=3
 { 15 13 x3 x2 } t=2 AF=1.78 CS=4
 { 13 x3 x2 x1 } t=2 AF=1.33 CS=4
 { 16 13 x3 x1 } t=2 AF=1.67 CS=4

Techmapping – enumerate cuts

t = Arrival Time

AF = Area Flow
 (estimated area required
 for introducing node)

CS = Cut Size

June 5, 200712

Techmapping – best cut for each node
13: { x5 x4 }
14: { x5 x4 x3 }
15: { x5 x4 x3 x1 }
16: { x5 x4 x3 x2 }
17: { 14 x2 x1 }
18: { 14 x7 x2 x1 }
19: { 14 x8 x2 x1 }
20: { 16 x1 }
21: { 16 x1 x0 }
22: { 16 x6 x1 x0 }
23: { 16 x6 x1 x0 }
24: { 14 x8 x2 x1 }
25: { x5 x4 x3 x2 }
26: { 15 x8 }
27: { 16 x6 x1 x0 }
28: { 18 15 x8 x2 }
29: { 27 19 17 x7 }

June 5, 200713

Techmapping – induced subgraph
13: { x5 x4 }
14: { x5 x4 x3 }
15: { x5 x4 x3 x1 }
16: { x5 x4 x3 x2 }
17: { 14 x2 x1 }
18: { 14 x7 x2 x1 }
19: { 14 x8 x2 x1 }
20: { 16 x1 }
21: { 16 x1 x0 }
22: { 16 x6 x1 x0 }
23: { 16 x6 x1 x0 }
24: { 14 x8 x2 x1 }
25: { x5 x4 x3 x2 }
26: { 15 x8 }
27: { 16 x6 x1 x0 }
28: { 18 15 x8 x2 }
29: { 27 19 17 x7 }

June 5, 200714

Techmapping – iterate procedure

“Super-gate” representation

(each box will expand to a set of clauses)

June 5, 200715

Benchmark Results

S = cnf Simplification D = Dag shrink T = Techmap for cnf

June 5, 200716

Conclusions

• Two techniques from logic synthesis was used:
– DAG-aware minimization
– Technology mapping (adapted for CNF generation)

• Both techniques contributed to speed-ups
• Orthogonal to CNF-based preprocessing
• For BMC problems, the speedup was ~10x.

